Abstract

<p>The convective motion of Earth’s upper mantle is controlled by two main deformation mechanisms: grain size-insensitive dislocation creep and grain size sensitive diffusion creep. Grain size thus plays a key role in upper mantle deformation, as it has a significant impact on the viscosity of the upper mantle. Moreover, grain size also affects seismic velocities as well as seismic attenuation.</p><p>Despite the importance of grain size and its evolution during deformation, there is still a lack of experimental data on grain growth of olivine at upper mantle pressures. For this reason, we here investigate olivine grain growth at pressures ranging from 1 GPa to 12 GPa and temperatures from 1200 to 1400ºC. The experiments were done using piston cylinder and multi-anvil apparatuses. We used as a starting material olivine aggregates with small amounts of pyroxene (<10%) produced via sol-gel method.</p><p>Our results indicate that grain growth is reduced at increasing pressures.  This suggests that the enhanced grain growth due to the temperature increase with depth may be offset, thus facilitating a change from dislocation to diffusion creep in the deep upper mantle. This might have an important impact on the dynamics of the upper mantle.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.