Abstract

We measured fluid transport properties at an effective pressure of 40 MPa in core samples of sediments and fault rocks collected by the Integrated Ocean Drilling Program (IODP) NanTroSEIZE drilling project Expedition 316 from the megasplay fault system (site C0004) and the frontal thrust (site C0007) in the Nankai subduction zone. Permeability decreased with effective pressure as a power law function. Permeability values in the fault zones were 8 × 10−18 m2 at site C0004 and 9 × 10−18 m2 at site C0007. Stratigraphic variation in transport properties suggests that the megasplay fault zone may act as a barrier to fluid flow, but the frontal thrust fault zone might not. Depth variation in permeability at site C0007 is probably controlled by the mechanical compaction of sediment. Hydraulic diffusivity at shallow depths was approximately 1 × 10−6 m2 s−1 in both fault zones, which is small enough to lead to pore pressure generation that can cause dynamic fault weakening. However, absence of a very low permeable zone, which may have formed in the Japan Trench subduction zone, might prevent facilitation of huge shallow slips during Nankai subduction zone earthquakes. Porosity tests under dry conditions might have overestimated the porosity.

Highlights

  • We measured fluid transport properties at an effective pressure of 40 MPa in core samples of sediments and fault rocks collected by the Integrated Ocean Drilling Program (IODP) NanTroSEIZE drilling project Expedition 316 from the megasplay fault system and the frontal thrust in the Nankai subduction zone

  • Both permeability and porosity decreased with increasing effective pressure, and the rate of decrease in permeability slowed as effective pressure increased

  • Permeability and hydraulic diffusivity were lower in the shallow megasplay fault zone than in the frontal thrust fault zone 3 (8.7 × 10−18 m2), but the difference was very small

Read more

Summary

Introduction

We measured fluid transport properties at an effective pressure of 40 MPa in core samples of sediments and fault rocks collected by the Integrated Ocean Drilling Program (IODP) NanTroSEIZE drilling project Expedition 316 from the megasplay fault system (site C0004) and the frontal thrust (site C0007) in the Nankai subduction zone. Stratigraphic variation in transport properties suggests that the megasplay fault zone may act as a barrier to fluid flow, but the frontal thrust fault zone might not. Depth variation in permeability at site C0007 is probably controlled by the mechanical compaction of sediment. Hydraulic diffusivity at shallow depths was approximately 1 × 10−6 m2 s−1 in both fault zones, which is small enough to lead to pore pressure generation that can cause dynamic fault weakening. Porosity tests under dry conditions might have overestimated the porosity

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call