Abstract

In this paper, we develop data-driven closure/correction terms to increase the pressure and velocity accuracy of reduced order models (ROMs) for fluid flows. Specifically, we propose the first pressure-based data-driven variational multiscale ROM, in which we use the available data to construct closure/correction terms for both the momentum equation and the continuity equation. Our numerical investigation of the two-dimensional flow past a circular cylinder at Re=50,000 in the marginally-resolved regime shows that the novel pressure data-driven variational multiscale ROM yields significantly more accurate velocity and pressure approximations than the standard ROM and, more importantly, than the original data-driven variational multiscale ROM (i.e., without pressure components). In particular, our numerical results show that adding the closure/correction term in the momentum equation significantly improves both the velocity and the pressure approximations, whereas adding the closure/correction term in the continuity equation improves only the pressure approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.