Abstract
Understanding oxidation mechanisms of layered semiconducting transition-metal dichalcogenides (TMDC) is important not only for controlling native oxide formation but also for synthesis of oxide and oxysulfide products. Here, reactive molecular dynamics simulations show that oxygen partial pressure controls not only the ZrS2 oxidation rate but also the oxide morphology and quality. We find a transition from layer-by-layer oxidation to amorphous-oxide-mediated continuous oxidation as the oxidation progresses, where different pressures selectively expose different oxidation stages within a given time window. While the kinetics of the fast continuous oxidation stage is well described by the conventional Deal-Grove model, the layer-by-layer oxidation stage is dictated by reactive bond-switching mechanisms. This work provides atomistic details and a potential foundation for rational pressure-controlled oxidation of TMDC materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.