Abstract

High-order harmonic generation in a hollow fiber filled with a weakly ionizing gas is theoretically analyzed within the framework of the slowly varying envelope approximation. The gas pressure that corresponds to maximum efficiency of frequency conversion, the absorption coefficient, the phase mismatch owing to gas dispersion, and the enhancement of harmonic-generation efficiency owing to waveguide phase matching are estimated for 27th-harmonic generation in hollow fibers filled with helium, neon, argon, krypton, or xenon. As a result of the ionization-induced self-phase modulation of the pump pulse in a hollow fiber filled with a weakly ionizing gas, the phase mismatch changes within the pump pulse, decreasing the overall efficiency of harmonic generation and making the harmonic-generation efficiency less sensitive to the gas pressure in the hollow fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.