Abstract

The itinerant quasi-ferromagnetic metal MnSi has been studied by detailed thermal expansion measurements under pressures and magnetic fields. A sudden decrease of the volume at the critical pressure P c ∼1.6 GPa has been observed and is in good agreement with the pressure variation of the volume fraction of the spiral magnetic ordering. This confirms that the magnetic order disappears by a first order phase transition. The energy change estimated by the volume discontinuity on crossing P c is of similar order as the Zeeman energy of the transition from the spiral ground state to a polarized paramagnetic one under magnetic field. In contrast to the strong pressure dependence of the transition temperature, the characteristic fields are weakly pressure dependent, indicating that the strength of the ferromagnetic and the Dzyaloshinskii–Moriya interactions do not change drastically around P c . The evaluated results of the thermal expansion coefficient and the magnetostriction are analyzed thermodynamically. The Sommerfeld coefficient of the linear temperature term of the specific heat is enhanced just below P c . The magnetic field-temperature phase diagrams in the ordered and paramagnetic phases are also compared. Comparison is made with other heavy fermion compounds with first order phase transition at 0 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.