Abstract
Formation and rupture of cerebral aneurysms have been associated with chronic hypertension. The effect of transient increase in blood pressure and its effect on intra-aneurysmal hemodynamics have not been studied. We examined the effects of controlled increases in blood pressure on different pressure parameters inside the sac of human cerebral aneurysms and corresponding parent arteries using invasive technology. Twelve patients (10 female, 2 male, age 54±15 years) with unruptured cerebral aneurysms undergoing endovascular coiling were recruited. Dual-sensor microwires with the capacity to simultaneously measure flow velocity and pressure were used to measure systolic, diastolic, and mean pressure inside the aneurysm sac and to measure both pressures and flow velocities in the feeder vessel just outside the aneurysm. These pressures were recorded simultaneously with pressures from a radial arterial catheter. Measurements were taken at baseline and then during a gradual increase in systemic systolic blood pressure to a target value of ≈25 mm Hg above baseline, using a phenylephrine infusion. The dose needed to achieve the required increase in radial arterial systolic blood pressure was 0.8±0.2 μg/kg/min. There was a clear linear relationship between changes in radial and aneurysmal pressures with substantial patient-by-patient variation in the slopes of those relationships. The overall increases in systolic and mean pressures in both radial artery and in the aneurysms were similar. Pressures in the aneurysm and in the parent vessels were similar. Peak and mean flow velocities in the parent arteries did not change significantly with phenylephrine infusion, nor did vessel diameters as measured angiographically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.