Abstract

Line shapes are measured for OH(v=1←0) transitions in the presence of Ar, He, O2, and N2 as a function of N rotational, spin–orbit, and λ doublet states. Pressure broadening coefficients for all transitions and buffer gases are determined from fits of the observed line shapes to the Voigt profile. The dependencies of the observed broadening coefficients on the OH quantum levels are discussed and compared with previous pressure broadening studies in HF and NO. The observed OH line shapes are interpreted in terms of their impact on the determination of mesospheric and stratospheric OH populations, temperatures, and quantum state distributions from OH nightglow and dayglow emission. In the case of OH+Ar, evidence for Dicke narrowing is presented and narrowing coefficients are reported from fits to a ‘‘hard collision’’ model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.