Abstract

In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincaré series, and entropy (pressure) of invariant measures. We show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong positive recurrence in this geometric context. A potential is said to be strongly positively recurrent when its pressure at infinity is strictly smaller than the full topological pressure. We show, in particular, that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong positively recurrent potentials and many examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.