Abstract
In this work, the effect of the pressure-assisted sintering process on buried thick film resistors integrated in LTCC multilayer has been studied. Four commercial resistor pastes with sheet resistivities between 10 kΩ and 10 MΩ/cm were analyzed. First they were characterized by SEM/EDX, XRD and Laser diffraction to determine composition and particle distribution. The pastes consist of isolating particles and of Ruthenium based particles that are supposed to build the conductive phase. The pastes were screen printed on LTCC green tape (DP 951) and buried in four layer laminates. Sintering was done in two ways, pressureless (PLS) and also pressure-assisted (PAS). The pressureless sintered resistors showed electrical resistance values roughly in the range of the nominal sheet resistivity and only relatively small fluctuation within one sample. The PAS samples on the other hand showed significantly higher resistances and larger deviations. The microstructure of the sintered resistors was again investigated by SEM and XRD. It seems that the resistivity is determined by the ratio of the two Ruthenium phases RuO2 and Pb2Ru2O6.5, where RuO2 has the higher conductivity. Buried resistors cannot be trimmed by a laser to adjust the resistance. But we discovered that a refiring step will reduce and normalize the resistivity of the PAS resistors significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.