Abstract

The kinetics of electron attachment to CF(3) as a function of temperature (300-600 K) and pressure (0.75-2.5 Torr) were studied by variable electron and neutral density attachment mass spectrometry exploiting dissociative electron attachment to CF(3)Br as a radical source. Attachment occurs through competing dissociative (CF(3) + e(-) → CF(2) + F(-)) and non-dissociative channels (CF(3) + e(-) → CF(3)(-)). The rate constant of the dissociative channel increases strongly with temperature, while that of the non-dissociative channel decreases. The rate constant of the non-dissociative channel increases strongly with pressure, while that of the dissociative channel shows little dependence. The total rate constant of electron attachment increases with temperature and with pressure. The system is analyzed by kinetic modeling in terms of statistical theory in order to understand its properties and to extrapolate to conditions beyond those accessible in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.