Abstract

Plastic deformation process resulting in ultra fine grained materials which are rapidly grasping applications due to their superior mechanical properties remain an area of continued research interest. Generally, the influence of die land length and web to flange ratio in grain refinement subsequent to plastic deformation process have not being adequately exploited especially in complex die opening geometries. In the present study, the effect of these parameters on extrusion pressure and morphological change in I-shaped die opening geometry is investigated and reported. A forward extrusion rig is designed and manufactured for the purpose of experimental investigation. The upper bound analysis shows that increasing die land length leads to increasing relative extrusion pressure. Optimum web to flange ratio of 0.45 is numerically simulated and recommended to extrude I-shaped lead alloy with minimum load requirement. The experimental results reveal that increasing area ratio leads to quasi-sinusoidal pattern in surface hardness of I-shaped section irrespective of strain rate value. Increasing web to flange ratio, therefore, leads to increasing anisotropy of the I-shaped lead alloy. The extruded sections were examined with optical metallurgical microscope, and it is observed that increasing strain rate results in profound refinement of grain and inclusions in lead alloy even at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.