Abstract

This work presents phase field fracture modeling in heterogeneous porous media. We develop robust and efficient numerical algorithms for pressure-driven and fluid-driven settings in which the focus relies on mesh adaptivity in order to save computational cost for large-scale 3D applications. In the fluid-driven framework, we solve for three unknowns pressure, displacements and phase field that are treated with a fixed-stress iteration in which the pressure and the displacement–phase-field system are decoupled. The latter subsystem is solved with a combined Newton approach employing a primal–dual active set method in order to account for crack irreversibility. Numerical examples for pressurized fractures and fluid filled fracture propagation in heterogeneous porous media demonstrate our developments. In particular, mesh refinement allows us to perform systematic studies with respect to the spatial discretization parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call