Abstract

This paper presents an accurate prediction of surface drag, pressure coefficient and flow transition around a symmetric airfoil design through the implementation of finite element discretization. Skin friction coefficient has been analyzed at different Reynolds number and at various angles of attack for NACA0012 airfoil design. The transition from laminar to turbulent flow significantly impacts the separation of the boundary layer and skin friction of the airfoil, ultimately affecting its aerodynamic characteristics. The pressure distribution around the surface of NACA0012 has also been computed at several Reynolds number and different attack angles using higher order triangular meshes. Numerical evaluation of these results when compared with the experimental results demonstrates superior accuracy with higher-order finite element mesh. The investigation carried out by higher-order element meshing approach is based on the subparametric transformation of parabolic arcs of triangular element curved at one side. Moreover, the high aspect ratio meshes obtained during discretization of airfoil design have been considered for the analysis. The investigation has yielded results that closely align with experimental data, demonstrating excellent performance. The current efficient analysis of pressure and flow transition is beneficial in interpreting aerodynamic performance and flow simulations for aerospace and computational fluid dynamics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call