Abstract

Coordination compounds, like iron(II) triazole complexes, exhibit spin crossover (SCO) behavior at around room temperature. Therefore, they are interesting for a variety of possible applications, and it is convenient to integrate them into polymers. Due to a reduction of the iron content and thus also 57Fe content in the sample through integration in polymers, Mössbauer measurements are only possible with greater difficulty or very long measurement times without expensive enrichment of the samples with 57Fe. So, other ways of improving the Mössbauer signal for these composite materials are necessary. Therefore, we pressed these composite materials to improve the Mössbauer spectra. In this study, we synthesized an iron(II) triazole spin crossover complex and an electrospun polymer complex composite nanofiber material including the same complex. For both products, Mössbauer measurements were performed at room temperature before and after using a press to show that the complex composite is not harmed through pressing. We investigate the influence of the pressing impact on the Mössbauer measurements in the context of measurement statistics and the measured signals. We show that pressing is not connected to any changes in the sample regarding the spin and oxidation state. We present that pressing improves the statistics of the Mössbauer measurements significantly. Furthermore, we use SEM measurements and PXRD to investigate whether or not the obtained fiber mats are destroyed in the pressing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.