Abstract
ABSTRACT Aerator systems promote additional insertion of air into the flow and can reduce the risk of cavitation and consequent damage to hydraulic structures. This work analyzes the hydrodynamic pressures on the steps of a physical model (with a chute inclination of 53.13º) subjected to different aeration conditions. When comparing the results with different air intake coefficients in the flow, it was concluded that the incorporation of air does not change in a generalized way all the statistical parameters associated with hydrodynamic pressures on the steps. However, with the insertion of air in the flow, there was an increase in the minimum pressure values measured in the region of the jet impact and downstream. Empirical equations for predicting the distribution of pressures on the steps under induced aeration conditions were proposed, valid for structures whose ratio between the height of the deflector and the height of the steps is equal to 0.167, with an aerator system installed at the beginning of the stepped chute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.