Abstract

Abstract The one-body density matrix (ODM) for a zero temperature non-interacting Fermi gas can be approximately obtained in the semiclassical regime through different ℏ -expansion techniques. One would expect that each method of approximating the ODM should yield equivalent density matrices which are both Hermitian and idempotent to any order in ℏ . However, the Kirzhnits and Wigner–Kirkwood methods do not yield these properties, while the Grammaticos–Voros method does. Here we show explicitly, for arbitrary d-dimensions through an appropriate change into symmetric coordinates, that each method is indeed identical, Hermitian, and idempotent. This change of variables resolves the inconsistencies between the various methods, showing that the non-Hermitian and non-idempotent behavior of the Kirzhnits and Wigner–Kirkwood methods is an artifact of performing a non-symmetric truncation to the semiclassical ℏ -expansions. Our work also provides the first explicit derivation of the d-dimensional Grammaticos–Voros ODM, originally proposed by Redjati et al (2019 J. Phys. Chem. Solids 134 313–8) based on their d = 1 , 2 , 3 , 4 expressions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.