Abstract

We describe experimental and theoretical studies of open-loop quantum control techniques known as dynamical decoupling (DD) for the suppression of decoherence-induced errors in quantum systems. Our experiments on trapped atomic ion qubits demonstrate that it is possible to optimize the construction of DD sequences for a given noise power spectral density. Studies of novel sequences derived analytically or through numerical optimization – while maintaining fixed control resources – demonstrate large gains in our ability to preserve quantum coherence in arbitrary noise environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.