Abstract
Maintaining the connectivity of an underlying robot network during a rendezvous task in the presence of obstacles is a challenge in control systems technology. In this brief, a navigation-function-based potential field approach is developed to address this challenging problem. A concept called connectivity constraint is used to establish a navigation function. A new potential field that simultaneously integrates rendezvous requirement, connectivity maintenance, and obstacle avoidance is also developed. On the basis of this potential field, we design a bounded control input for multirobot control. The proposed controller can drive multiple robots to an agreement state while maintaining connectivity of the underlying network provided that the initial configurations of the robots are connected. Simulations and experiments are performed to verify the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Control Systems Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.