Abstract
When a fire is suspected to be intentionally set, fire debris samples can be collected and analyzed for ignitable liquid residues (ILRs). In some cases, samples will contain highly organic substrates such as soil or rotting wood. These substrates will contain a high bacterial load, which can result in systematic and irreversible damage to the ILR due to microbial degradation. This paper explores ways to preserve ILR by sterilizing fire debris samples without interfering with their subsequent analysis. There are many methods reported in the literature for sterilizing soil, such as freezing, irradiation, autoclaving, and various chemical fumigation techniques. However, these methods either do not kill all bacterial species, cannot be easily applied in the field or would interfere with the analysis of the ILRs. For this work, various anti-microbial compounds including triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether) were tested for their efficacy at killing bacteria present in the soil. Triclosan was highly effective in qualitative growth studies and was therefore used to measure bacterial growth (or lack thereof) by spectroscopic analysis as well as passive headspace analysis. These experiments showed that triclosan was able to sterilize soil samples in less than 60s, maintain their sterility for at least 77h and preserve gasoline residues on a soil matrix for at least 30 days.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.