Abstract
In this paper, we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, such as $1/f$ noise, using dynamical decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows us to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$ noise. We investigate the efficiency of an ``entanglement memory'' element under two-pulse echo and under sequences of periodic, Carr-Purcell, and Uhrig dynamical decoupling. The Carr-Purcell sequence is shown to outperform the other sequences in preserving entanglement against both random telegraph and $1/f$ noise. For typical $1/f$ flux-noise figures in superconducting nanocircuits, we show that entanglement and its nonlocal features can be efficiently stored up to times one order of magnitude longer than natural entanglement disappearance times employing pulse timings of current experimental reach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.