Abstract

Commercially available auditory steady state response (ASSR) systems are widely used to obtain hearing thresholds in the pediatric population objectively. Children are often examined during natural or induced sleep so that the recorded ASSRs are of subcortical origin, the inferior colliculus being often designated as the main ASSR contributor in these conditions. This report presents data from a battery of auditory neurophysiological objective tests obtained in 3 cases of severe brainstem dysfunction in sleeping children. In addition to ASSRs, envelope-following response (EFR) recordings designed to distinguish peripheral (cochlear nerve) from central (brainstem) were recorded to document the effect of brainstem dysfunction on the two types of phase-locked responses. Results obtained in the 3 children with severe brainstem dysfunctions were compared with those of age-matched controls. The cases were identified as posterior fossa tumor, undiagnosed (UD), and Pelizaeus-Merzbacher-Like Disease. The standard audiological objective tests comprised tympanograms, distortion product otoacoustic emissions, click-evoked auditory brainstem responses (ABRs), and ASSRs. EFRs were recorded using horizontal (EFR-H) and vertical (EFR-V) channels and a stimulus phase rotation technique allowing isolation of the EFR waveforms in the time domain to obtain direct latency measurements. The brainstem dysfunctions of the 3 children were revealed as abnormal (weak, absent, or delayed) ABRs central waves with a normal wave I. In addition, they all presented a summating and cochlear microphonic potential in their ABRs, coupled with a normal wave I, which implies normal cochlear and cochlear nerve function. EFR-H and EFR-V waveforms were identified in the two cases in whom they were recorded. The EFR-Hs onset latencies, response durations, and phase-locking values did not differ from their respective age-matched control values, indicating normal cochlear nerve EFRs. In contrast, the EFR-V phase-locking value and onset latency varied from their control values. Both patients had abnormal but identifiable and significantly phase-locked brainstem EFRs, even in a case with severely distorted ABR central waves. ASSR objective audiograms were recorded in two cases. They showed normal or slightly elevated (explained by a slight transmission loss) thresholds that do not yield any clue about their brainstem dysfunction, revealing the method's lack of sensitivity to severe brainstem dysfunction. The present study, performed on 3 sleeping children with severe brainstem dysfunction but normal cochlear responses (cochlear microphonic potential, summating potential, and ABR wave I), revealed the differential sensitivity of three auditory electrophysiological techniques. Estimated thresholds obtained by standard ASSR recordings (cases UD and Pelizaeus-Merzbacher-Like Disease) provided no clue to the brainstem dysfunction clearly revealed by the click-evoked ABR. EFR recordings (cases posterior fossa tumor and UD) showed preserved central responses with abnormal latencies and low phase-locking values, whereas the peripheral EFR attributed to the cochlear nerve was normal. The one case (UD) for which the three techniques could be performed confirms this sensitivity gradient, emphasizing the need for applying the Cross-Check Principle by avoiding resorting to ASSR recording alone. The entirely normal EFR-H recordings observed in two cases further strengthen the hypothesis of its cochlear nerve origin in sleeping children.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.