Abstract

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.