Abstract

Nanocarriers that are used for targeted drug delivery come in contact with biological liquids and subsequently proteins will adsorb to the nanocarriers’ surface to form the so called ‘protein corona’. The protein corona defines the biological identity and determines the biological response towards the nanocarriers in the body. To make nanomedicine safe and reliable it is required to get a better insight into this protein corona and, therefore, the adsorbed proteins have to be characterized. Currently, centrifugation is the common method to isolate the protein corona for further investigations. However, with this method it is only possible to investigate the strongly bound proteins, also referred to as ‘hard protein corona’. Therefore, we want to introduce a new separation technique to separate nanoparticles including the soft protein corona containing also loosely bound proteins for further characterization. The used separation technique is the asymmetric flow field-flow fractionation (AF4). We were able to separate the nanoparticles with proteins forming the soft protein corona and were able to show that in our system only the hard protein corona directly influenced the cell uptake behavior. Statement of SignificanceCurrently, there is an ongoing debate whether only strongly bound proteins (hard corona) or also loosely bound proteins (soft corona) contribute to the biological identity of nanocarriers, because up to now isolation of the soft corona was not possible. Here, asymmetric flow field-flow fractionation was used to isolate nanoparticles with a preserved soft corona from the biological medium. This enabled the characterization of the soft corona composition and to evaluate its influence on cellular uptake. For our system we found that only the strongly bound proteins (hard corona) determined cell internalization. This method can now be used to evaluate the impact of the soft corona further and to characterize nanomaterials that cannot be separated from blood plasma by other means.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.