Abstract
AbstractThe signature of a coherent system has been studied extensively in the recent literature. Signatures are particularly useful in the comparison of coherent or mixed systems under a variety of stochastic orderings. Also, certain signature-based closure and preservation theorems have been established. For example, it is now well known that certain stochastic orderings are preserved from signatures to system lifetimes when components have independent and identical distributions. This applies to the likelihood ratio order, the hazard rate order, and the stochastic order. The point of departure of the present paper is the question of whether or not a similar preservation result will hold for the mean residual life order. A counterexample is provided which shows that the answer is negative. Classes of distributions for the component lifetimes for which the latter implication holds are then derived. Connections to the theory of order statistics are also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.