Abstract

Basal ganglia are a network of interconnected nuclei, involved in motor control, goal-directed behaviors and procedural learning. Basal ganglia process information from the cerebral cortex through three main pathways. The striatum is the input nucleus of the direct (cortico-striato-nigral) and indirect (cortico-striato-pallido-subthalamo-nigral) pathways while the subthalamic nucleus (STN) is the input structure of the hyperdirect (cortico-subthalamo-nigral) pathway. Despite the fact that the hyperdirect pathway constitutes a central part of most of basal ganglia models, experimental studies concerning its synaptic transmission and plasticity are still lacking. This is mainly because in vitro brain slices do not preserve the hyperdirect pathway. Here, we address this by developing a hyperdirect pathway brain slice where cortico-subthalamo-nigral connections were preserved. We characterized the transmission properties and its monosynaptic features between the frontal cortex and the STN, and between the STN and the substantia nigra pars reticulata (SNr), the output nucleus of the hyperdirect pathway. Cortical stimulation evoked monosynaptic glutamatergic events in STN neurons with a mean latency of 11.3ms and a mean amplitude of 21pA. STN stimulations evoked monosynaptic glutamatergic events in SNr neurons with a mean latency of 2.5ms and a mean amplitude of 116pA. This brain slice also preserved a part of the direct and indirect pathways such as the cortico-striatal connection. This novel slice configuration containing the hyperdirect pathway is a useful tool to better understand the transmission and plasticity in this pathway and hence the physiology and the pathophysiology of basal ganglia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.