Abstract
Individuals may regard reproduction as optional but sufficient number of them must be productive to perpetuate the species. The reproductive system is surprisingly vulnerable and depends, among other things, on a limited endowment of oocytes, controlled proliferation of spermatogonial stem cells and the genetic integrity of both. The developmental competence of oocytes and spermatogonial stem cells is maintained by evolved mechanisms for cellular detoxification and genomic stability, and excess or damaged cells are eliminated by apoptosis. Gonadal failure as a result of germ cell depletion can occur at any age, and from the effects of chemical cytotoxicity, disease and infection as well as genetic predisposition. Among extrinsic factors, alkylating agents and ionizing radiation are important causes of iatrogenic gonadal failure in young women and men. In animal models, there is evidence that hormonal manipulation, deletion of genes involved in apoptotic pathways and dietary manipulation can protect against natural and induced germ cell loss, but evidence in humans is absent or unclear. Assisted reproductive technologies (ARTs) provide an ensemble of strategies for preserving fertility in patients and commercially valuable or endangered species. Semen cryopreservation was the first technology for preserving male fertility, but this cannot serve prepubertal boys, for whom banking of testicular biopsies may provide a future option. In sterilized rodents, cryopreserved spermatogonial stem cells can recolonize seminiferous tubules and reinitiate spermatogenesis, and subcutaneous implantation of intact tubules can generate spermatozoa for fertilization in vitro by intracytoplasmic sperm injection. Transplantation of frozen-banked ovarian tissue is well-established for restoring cyclicity and fertility and is currently undergoing clinical evaluation for cancer patients. When restoration of natural fertility is unnecessary or reimplantation is unsafe, it is desirable to culture the germ cells from thawed tissue in vitro until they reach the stage at which they can be fertilized. Low temperature banking of immature germ cells is potentially very versatile, but storage of embryos and, to a lesser extent, mature oocytes is already practised in a number of species, including humans, and is likely to remain a mainstay for fertility preservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.