Abstract

We consider the dynamics arising from the iteration of an arbitrary sequence of polynomials with uniformly bounded degrees and coefficients and show that, as parameters vary within a single hyperbolic component in parameter space, certain properties of the corresponding Julia sets are preserved. In particular, we show that if the sequence is hyperbolic and all the Julia sets are connected, then the whole basin at infinity moves holomorphically. This extends also to the landing points of external rays and the resultant holomorphic motion of the Julia sets coincides with that obtained earlier in [9] using grand orbits. In addition, we have combinatorial rigidity in the sense that if a finite set of external rays separates the Julia set for a particular parameter value, then the rays with the same external angles separate the Julia set for every parameter in the same hyperbolic component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.