Abstract

Conjugated primary bile acids are produced by the liver and exist at high concentrations in the proximal small intestine, where they are critical for proper digestion. Deconjugation of these bile acids with subsequent transformation via dehydroxylation into secondary bile acids is regulated by the colonic gut microbiota and reduces their digestive function. Using an in vitro platform modeling the small intestinal microbiota, we analyzed the ability of this community to transform primary bile acids and studied the effect of physiological levels of oxygen normally found in the proximal small intestine (5%) on this metabolic process. We found that oxygenation of the small intestinal microbiota inhibited the deconjugation of primary bile acids in vitro. These findings suggest that luminal oxygen levels normally found in the small intestine may maintain the optimal role of bile acids in the digestive process by regulating bile acid conversion by the gut microbiota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call