Abstract
Abstract The preservation of nonrapidly buried autochthonous shell concentrations with noncementing epifaunal animals in life position presents a taphonomic dilemma if in fact an increase in shelliness is driven by a decrease in sedimentation rate. A 150‐cm‐thick, densely packed shell bed with brachiopods from the Lower Jurassic of Morocco shows lower levels of postmortem alteration than shell‐poor beds, indicating that its formation is primarily governed by variations in hardpart‐input rates. Varying dominance and size structure of the main shell producer, brachiopod Zeilleria rehmanni, indicate that its increased population density was the main trigger in the shell bed formation. Thinner and less common microbial crusts in the shell bed than in shell‐poor beds indicate that higher shelliness is not due to lack of sediment. On the basis of actualistic data from modern mussel and oyster shell beds, the suspension feeding of a high‐density population leads to high biodeposition rates through production of ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.