Abstract

Silver nanoparticles have been formed in fluff pulp and nanostructured Lyocell fibres by immersion in silver nitrate, and a subsequent transformation of the adsorbed silver ions into elementary silver nanoparticles by physical (thermal/UV) or chemical (sodium borohydride) methods. Microscopy revealed that nanoparticles generated by physical methods were regular in shape and efficiently dispersed, while the chemical reduction produced highly aggregated nanoparticles. Nanoparticle size has been found relevant to guarantee high antimicrobial activity, being the samples with big aggregated silver nanoparticles almost inefficient. Indeed a satisfactory correlation between silver ion release and the antimicrobial efficiency against Escherichia coli and Staphylococcus aureus could be confirmed, and furthermore, the highest concentrations tested were efficient to reduce the microbial load in poultry exudates. This work demonstrates that especially designed absorbent materials could be optimised to preserve aseptic conditions during manipulation, leading to feasible applications of a silver based nanotechnology in food technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call