Abstract
The use of saline water in agricultural production will be increasingly necessary in the next decades. However, postharvest quality may be compromised, as in okra, due to salt stress and/or factors inherent to storage and transportation. In this context, developing alternative methods of preservation, including lactic fermentation, may be a promising way to maintain and even improve the nutritional quality of okra. Thus, the objective was to evaluate the production components of okra subjected to different levels of water salinity and doses of potassium fertilization, and further to evaluate the preservation by lactic fermentation of okra fruits produced under water salinity. The first experiment was carried out in lysimeters under field conditions in Neossolo Regolítico (Psamment) of sandy loam texture in Pombal-PB, in a randomized block design in a 5 x 5 factorial scheme, testing 5 levels of irrigation water salinity (0.3; 1.3; 2.3; 3.3, and 4.3 dS m-1) and 5 doses of potassium fertilization (75; 112.5; 150; 187.5, and 225 mg of K2O kg-1 of soil), with three replicates. After that, the okra fruits produced under the different salinity levels were stored in six mixtures of salts present in lactic fermentation brine (100-0-0, 0-100-0, 0-0-100, 50-50-0, 0-50-50, and 50-0-50 of NaCl, CaCl2, and KCl, respectively), under a 5 x 6 factorial, with three replicates, in a completely randomized design. The post-harvest quality, after fermentation, was evaluated based on their physicochemical characteristics. Irrigation water salinity negatively affected the average length, average weight, titratable acidity, soluble solids/titratable acidity ratio, and pH of the okra fruits. Potassium doses increased the average diameter of okra fruits, minimizing the deleterious effects of irrigation water salinity. The vitamin C contents of pickled okra fruits were not compromised by salt stress. Among the lactic fermentation brines, the formulation containing the proportion NaCl:CaCl2 stands out as promoting the highest titratable acidity and soluble solids content in pickled okra fruits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.