Abstract

The diagnosis and treatment of sepsis have always been a challenge for the physician, especially in critical care setting such as emergency department (ED), and currently sepsis remains one of the major causes of mortality. Although the traditional definition of sepsis based on systemic inflammatory response syndrome (SIRS) criteria changed in 2016, replaced by the new criteria of SEPSIS-3 based on organ failure evaluation, early identification and consequent early appropriated therapy remain the primary goal of sepsis treatment. Unfortunately, currently there is a lack of a foolproof system for making early sepsis diagnosis because conventional diagnostic tools like cultures take a long time and are often burdened with false negatives, while molecular techniques require specific equipment and have high costs. In this context, biomarkers, such as C-Reactive Protein (CRP) and Procalcitonin (PCT), are very useful tools to distinguish between normal and pathological conditions, graduate the disease severity, guide treatment, monitor therapeutic responses and predict prognosis. Among the new emerging biomarkers of sepsis, Presepsin (P-SEP) appears to be the most promising. Several studies have shown that P-SEP plasma levels increase during bacterial sepsis and decline in response to appropriate therapy, with sensitivity and specificity values comparable to those of PCT. In neonatal sepsis, P-SEP compared to PCT has been shown to be more effective in diagnosing and guiding therapy. Since in sepsis the P-SEP plasma levels increase before those of PCT and since the current methods available allow measurement of P-SEP plasma levels within 17 min, P-SEP appears a sepsis biomarker particularly suited to the emergency department and critical care.

Highlights

  • The diagnosis and treatment of sepsis have always been a challenge for the physician, especially in critical care setting

  • The traditional definition of sepsis, since 1992 referred to as the presence or suspected infection associated with a systemic inflammatory response syndrome (SIRS) [7], changed in 2016, replaced by the new criteria of SEPSIS-3 [8], so that sepsis is currently defined as infection with organ dysfunction, assessed by the Sequential Organ Failure Assessment (SOFA score), while the previous expression “severe sepsis” is no longer adopted to increase predictive accuracy [9]; early identification and consequent early appropriated therapy remain a cornerstone of sepsis treatment

  • We mainly focused on randomized placebo-control studies, followed by case-control studies, observational, and systematic reviews and meta-analysis

Read more

Summary

Introduction

The diagnosis and treatment of sepsis have always been a challenge for the physician, especially in critical care setting. Sepsis is one of the major causes of mortality in both emergency department (ED) and intensive care unit (ICU), due to main difficulty of early recognition and appropriate identification of the etiology [1,2,3]. The untimely identification of a sepsis leads to a therapeutic delay with a consequent increase in mortality; on the other hand, often patients are treated with unnecessary antibiotic therapy, which is one of the main causes of antibiotic resistance [4,5,6]. Currently there is a lack of a foolproof system for making early sepsis diagnosis In this context, biomarkers, defined as objectively measurable characteristics of biological processes, are very useful tools to distinguish between normal and pathological conditions, graduate the disease severity, guide treatment, monitor therapeutic responses and predict prognosis [11,12].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call