Abstract
We give a presentation of the Schur algebras S Q (2,d) by generators and relations, in fact a presentation which is compatible with Serre's presentation of the universal enveloping algebra of a simple Lie algebra. In the process we find a new basis for S Q (2,d), a truncated form of the usual PBW basis. We also locate the integral Schur algebra within the presented algebra as the analogue of Kostant's Z-form, and show that it has an integral basis which is a truncated version of Kostant's basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.