Abstract
Research Article| December 01, 2001 Present tectonic motion across the Coast Ranges and San Andreas fault system in central California Donald F. Argus; Donald F. Argus 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA Search for other works by this author on: GSW Google Scholar Richard G. Gordon Richard G. Gordon 2Department of Earth Science, Rice University, Houston, Texas 77005, USA Search for other works by this author on: GSW Google Scholar GSA Bulletin (2001) 113 (12): 1580–1592. https://doi.org/10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2 Article history received: 28 May 1999 rev-recd: 22 Jan 2000 accepted: 01 May 2001 first online: 01 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share MailTo Twitter LinkedIn Tools Icon Tools Get Permissions Search Site Citation Donald F. Argus, Richard G. Gordon; Present tectonic motion across the Coast Ranges and San Andreas fault system in central California. GSA Bulletin 2001;; 113 (12): 1580–1592. doi: https://doi.org/10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract Geodetic results from very long baseline interferometry (VLBI), satellite laser ranging (SLR), and the Global Positioning System (GPS) are used to estimate angular velocities between the Sierran microplate, Pacific plate, and North American plate. The Sierra-Pacific pole of rotation lies nearer to the San Andreas fault than does the Pacific–North America pole of rotation and leads to different tectonic implications than if the latter is used. The angular velocities show that the San Andreas fault system and central California Coast Ranges accommodate motion of 39 ± 2 mm/yr, mainly by strike-slip faulting. (All confidence limits following ± signs in this paper are 95% confidence limits.) Fault-normal motion is small, is mainly convergent (at rates up to 3.3 ± 1.0 mm/yr), and varies along the coast, but is divergent (at 2.6 ± 1.2 mm/yr) across San Pablo Bay and associated topographic lows across which the Sierran and Central Valley watershed drains to the Pacific Ocean. The mountain ranges tend to be larger where the fault-normal convergence rates are larger. The low convergence rate (0.5 ± 1.8 mm/yr) normal to the San Andreas fault in the Carrizo Plain differs sharply from that previously inferred (8.2 ± 1.2 mm/yr and 4.9 ± 1.6 mm/yr) by Feigl et al. (1993). The difference is due to differences between their and our elastic strain accumulation models and between how their and our Pacific plate reference frames are defined.The ranges in most places require a minimum of 4 +2/–1 m.y. of fault-normal convergence at the present rate to attain their present cross-sectional area if erosion is neglected, more if it is not. The amount of convergence previously estimated from a balanced cross section across the Diablo Range in central California requires 10 +8/–3 m.y. of convergence at the present rate. The former is consistent with widely held views about the onset of the Coast Range orogeny, but the latter is not. Both are consistent, however, with the recent plate reconstructions by S. Cande, J. Stock, and colleagues, which indicate that Pacific plate motion relative to North America changed to a more convergent direction, 20°–25° clockwise of its prior direction, at ca. 8 to 6 Ma and not at 3.5 Ma, as had been previously inferred. The inferred change in direction of plate motion is large compared with the present angle of convergence across the straight and narrow segment of the San Andreas fault of 0.7°–4.7°, from which we infer that the Sierran microplate changed motion relative to North America at the same time (ca. 8 to 6 Ma) as did the Pacific plate. We further infer that the motion accommodated across the Great Basin must also have changed at the same time.We also examine the hypothesis that stable sliding occurs along the San Andreas fault and other northwest-striking strike- slip faults in central California where the fault-normal convergence rate is low or negative, and that these faults are unstable where the fault-normal convergence rate is high. Such a relationship appears to hold in general, but fails in detail. In particular, there are substantial sections of fault with small inferred rates of fault-normal convergence across which the San Andreas fault is locked. Moreover, the creeping section of the San Andreas fault (i.e., the section between Parkfield and the Calaveras junction) is the locus of greater fault-normal convergence (3.2 ± 1.4 mm/yr) than is the locked part of the fault (0.5 ± 1.8 mm/yr) south of Parkfield. Thus, this hypothesis is at best a partial explanation for the observed distribution of locked and nonlocked sections of the fault. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.