Abstract

SummaryMutations in the presenilin genes are the major cause of familial Alzheimer's disease (AD). Loss of presenilin activity and/or accumulation of amyloid-β peptides have been proposed to mediate the pathogenesis of AD by impairing synaptic function1-5. However, the precise site and nature of the synaptic dysfunction remain unknown. Here we employ a genetic approach to inactivate presenilins conditionally in either presynaptic (CA3) or postsynaptic (CA1) neurons of the hippocampal Schaeffer-collateral pathway. We found that long-term potentiation (LTP) induced by theta burst stimulation is decreased after presynaptic but not postsynaptic deletion of presenilins. Moreover, presynaptic but not postsynaptic inactivation of presenilins alters short-term plasticity and synaptic facilitation. The probability of evoked glutamate release, measured with the open-channel NMDA receptor antagonist MK-801, is reduced by presynaptic inactivation of presenilins. Strikingly, depletion of endoplasmic reticulum Ca2+-stores by thapsigargin or blockade of Ca2+-release from these stores by ryanodine receptor inhibitors mimics and occludes the effects of presynaptic presenilin inactivation. Collectively, these results reveal a selective role for presenilins in the activity-dependent regulation of neurotransmitter release and LTP induction via modulation of intracellular Ca2+-release in presynaptic terminals, and further suggest that presynaptic dysfunction might be an early pathogenic event leading to dementia and neurodegeneration in AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call