Abstract

Presenilins are ubiquitous, intramembrane proteins that function in Alzheimer's disease (AD) as the catalytic component of the γ-secretase complex. Familial AD mutations in presenilin are known to exacerbate lysosomal pathology. Hence, we sought to elucidate the function endogenous, wild-type presenilins play in autophagy-mediated protein degradation. We report the finding that genetic deletion or knockdown of presenilins alters many autophagy-related proteins demonstrating a buildup of autophagosomes, indicative of dysfunction in the system. Presenilin-deficient cells inefficiently clear long-lived proteins and fail to build up autophagosomes when challenged with lysosomal inhibitors. Our studies further show that γ-secretase inhibitors do not adversely impact autophagy, indicating that the role of presenilins in autophagy is independent of γ-secretase activity. Based on our findings, we conclude that endogenous, wild-type presenilins are necessary for proper protein degradation through the autophagosome-lysosome system by functioning at the lysosomal level. The role of presenilins in autophagy has many implications for its function in neurological diseases such as AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call