Abstract

Presenilins (PSs) are part of the gamma-secretase complex that produces the amyloid beta-peptide (Abeta) from its precursor [beta-amyloid precursor protein (betaAPP)]. Mutations in PS that cause familial Alzheimer's disease (FAD) increase Abeta production and trigger p53-dependent cell death. We demonstrate that PS deficiency, catalytically inactive PS mutants, gamma-secretase inhibitors, and betaAPP or amyloid precursor protein-like protein 2 (APLP2) depletion all reduce the expression and activity of p53 and lower the transactivation of its promoter and mRNA expression. p53 expression also is diminished in the brains of PS- or betaAPP-deficient mice. The gamma- and epsilon-secretase-derived amyloid intracellular C-terminal domain (AICD) fragments (AICDC59 and AICDC50, respectively) of betaAPP trigger p53-dependent cell death and increase p53 activity and mRNA. Finally, PS1 mutations enhance p53 activity in human embryonic kidney 293 cells and p53 expression in FAD-affected brains. Thus our study shows that AICDs control p53 at a transcriptional level, in vitro and in vivo, and that FAD mutations increase p53 expression and activity in cells and human brains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.