Abstract
Sustained canonical Wnt signaling requires the inhibition of glycogen synthase kinase 3 (GSK3) activity by sequestration of GSK3 inside multivesicular endosomes (MVEs). Here, we show that Wnt signaling is increased by the lysosomal inhibitor chloroquine, which causes accumulation of MVEs. A similar MVE expansion and increased Wnt responsiveness was found in cells deficient in presenilin, a protein associated with Alzheimer's disease. The Wnt-enhancing effects were entirely dependent on the functional endosomal sorting complex required for transport (ESCRT), which is needed for the formation of intraluminal vesicles in MVEs. We suggest that accumulation of late endosomal structures leads to enhanced canonical Wnt signaling through increased Wnt-receptor/GSK3 sequestration. The decrease in GSK3 cytosolic activity stabilized cytoplasmic GSK3 substrates such as β-catenin, the microtubule-associated protein Tau, and other proteins. These results underscore the importance of the endosomal pathway in canonical Wnt signaling and reveal a mechanism for regulation of Wnt signaling by presenilin deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.