Abstract

An unusual intramembranous cleavage of the beta-amyloid precursor protein (APP) by gamma-secretase is the final step in the generation of amyloid beta-peptide (Abeta). Two conserved aspartates in transmembrane (TM) domains 6 and 7 of presenilin (PS) 1 are required for Abeta production by gamma-secretase. Here we report that the APP C-terminal fragments, C83 and C99, which are the direct substrates of gamma-secretase, can be coimmunoprecipitated with both PS1 and PS2. PS/C83 complexes were detected in cells expressing endogenous levels of PS. The complexes accumulate when gamma-secretase is inactivated either pharmacologically or by mutating the PS aspartates. PS1/C83 and PS1/C99 complexes were detected in Golgi-rich and trans-Golgi network-rich vesicle fractions. In contrast, complexes of PS1 with APP holoprotein, which is not the immediate substrate of gamma-secretase, occurred earlier in endoplasmic reticulum-rich vesicles. The major portion of intracellular Abeta at steady state was found in the same Golgi/trans-Golgi network-rich vesicles, and Abeta levels in these fractions were markedly reduced when either PS1 TM aspartate was mutated to alanine. Furthermore, de novo generation of Abeta in a cell-free microsomal reaction occurred specifically in these same vesicle fractions and was markedly inhibited by mutating either TM aspartate. Thus, PSs are complexed with the gamma-secretase substrates C83 and C99 in the subcellular locations where Abeta is generated, indicating that PSs are directly involved in the pathogenically critical intramembranous proteolysis of APP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call