Abstract
Familial forms of Alzheimer's disease (FADs) are caused by the expression of mutant presenilin 1 (PS1) or presenilin 2. Using DNA microarrays, we explored the brain transcription profiles of mice with conditional knock-out of PS1 (cKO PS1) in the forebrain. In parallel, we performed a transcription profiling of the hippocampus and frontal cortex of the FAD-linked DeltaE9 mutant transgenic (TG) mice and matched controls [TG mice expressing wild-type human PS1 (hPS1)]. When the TG and cKO datasets were cross-compared, the majority of the 30 common expression alterations were in opposite direction, suggesting that the FAD-linked PS1 variant produces transcriptome changes primarily by gain of aberrant function. Our microarray studies also revealed an unanticipated inverse correlation of transcript levels between the brains of mice that coexpress DeltaE9 hPS1+ amyloid precursor protein (APP)695 Swe and DeltaE9 hPS1 single transgenic mice. The opposite directionality of these changes in transcript levels must be a function of APP and/or APP derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.