Abstract

Initiations of cell signaling pathways often occur through the formation of multiprotein complexes that form through protein-protein interactions. Therefore, detecting their presence is central to understanding the function of a cell signaling pathway, aberration of which often leads to fatal diseases, including cancers. However, the multiprotein complexes are often difficult to detect using microscopes due to their small sizes. Therefore, currently, their presence can be only detected through indirect means. In this article, we propose to investigate the presence or absence of protein complexes through some easily measurable kinetic parameters, such as activation rates. As a proof of concept, we investigate the Ras-Raf system, a well-characterized cell signaling system. It has been hypothesized that Ras dimerization is necessary to create activated Raf dimers. Although there are circumstantial evidences supporting the Ras dimerization hypothesis, direct proof of Ras dimerization is still inconclusive. In the absence of conclusive direct experimental proof, this hypothesis can only be examined through indirect evidences of Ras dimerization. In this article, using a multiscale simulation technique, we provide multiple criteria that distinguishes an activation mechanism involving Ras dimerization from another mechanism that does not involve Ras dimerization. The provided criteria will be useful in the investigation of not only Ras-Raf interaction but also other two-protein interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.