Abstract

BackgroundThe aim of this study was to determine the association between white matter lesions (WML) and diabetes-associated cognitive decline (DACD) in rat models of type 2 diabetes (T2DM).Material/MethodsSixty Sprague-Dawley male rats were divided into 4 groups: control, control+metformin, T2DM, and T2DM+metformin groups. The T2DM groups were fed a diet high in fat and glucose to induce impaired glucose tolerance (IGT) and then were injected with streptozotocin to induce T2DM. The Morris water maze test was used to evaluate cognitive function. Brain diffusion tensor imaging scans were performed for WML. The expression of myelin basic protein (MBP), oligodendrocyte transcription factor 1 (OLIG1), and OLIG2 (markers of brain damage and repair) was determined using immunofluorescence. After IGT, the fractional anisotropy (FA) values of the right thalamus area were significantly lower in both T2DM groups compared with controls.ResultsEight weeks after streptozotocin injection, the FA values of the thalamus were lower in the T2DM (bilateral thalamus) group and T2DM+metformin (left thalamus) group than in controls, while the FA values in the left thalamus area were lower in the T2DM+metformin group than in the control and control+metformin groups. The maze escape latency was longer and the number of rats passing through the platform was smaller in the T2DM and T2DM+metformin groups than in the control group. MBP levels were lower and OLIG1 and OLIG2 levels were higher in both T2DM groups than in controls.ConclusionsWML is associated with DACD and appears before the onset of T2DM and signs of DACD and plays a role in diabetes-associated cognitive decline. Metformin reduces WMLs but does not rescue cognitive dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call