Abstract

A total of 57 methicillin-resistant Staphylococcus aureus (MRSA) isolates and 475 methicillin-resistant coagulase-negative staphylococci (MRCoNS) collected from pigs in the Guangdong province of China in 2014 were investigated for the presence of the novel oxazolidinone-phenicol resistance gene optrA The optrA gene was detected in 6.9% (n = 33) of the MRCoNS, all of which were Staphylococcus sciuri isolates, but in none of the MRSA isolates. Five optrA-carrying methicillin-resistant (MR) S. sciuri isolates also harbored the multiresistance gene cfr Pulsed-field gel electrophoresis (PFGE) and dru typing of the 33 optrA-carrying MR S. sciuri isolates revealed 25 patterns and 5 sequence types, respectively. S1 nuclease PFGE and Southern blotting confirmed that optrA was located in the chromosomal DNAs of 29 isolates, including 1 cfr-positive isolate. The remaining four isolates harbored a ∼35-kb pWo28-3-like plasmid on which optrA and cfr were located together with other resistance genes, as confirmed by sequence analysis. Six different types of genetic environments (types I to VI) of the chromosome-borne optrA genes were identified; these types had the optrA gene and its transcriptional regulator araC in common. Tn558 was found to be associated with araC-optrA in types II to VI. The optrA gene in types II and III was found in close proximity to the ccr gene complex of the respective staphylococcal cassette chromosome mec element (SCCmec). Since oxazolidinones are last-resort antimicrobial agents for the control of serious infections caused by methicillin-resistant staphylococci in humans, the location of the optrA gene close to the ccr complex is an alarming observation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call