Abstract

Chromogranins and secretogranins have traditionally been known as marker proteins of secretory granules that contain the highest concentrations of cellular calcium, reaching approximately 40 mM. In addition, chromogranin B was also shown to exist in the nucleus, localizing in the putative inositol 1,4,5-trisphosphate (IP3)-sensitive nucleoplasmic Ca2+ store vesicles. Chromogranins A (CGA) and B (CGB) are high-capacity, low-affinity Ca2+ binding proteins, binding 30-90 mol of Ca2+/mol with dissociation constants (Kd) of 1.5-4 mM. Yet the Ca2+-binding property of secretogranins has not been studied. Here, we show the localization of secretogranin II (SgII) in the nucleus, more specifically, in the IP3-sensitive nucleoplasmic Ca2+ store vesicles along with CGB and the IP3 receptors. We have also determined the Ca2+-binding property of SgII and found that SgII binds 61 mol of Ca2+/mol (910 nmol Ca2+/mg) with a Kd of 3.0 mM at the intragranular pH 5.5 and 30 mol of Ca2+/mol (440 nmol Ca2+/mg) with a Kd of 2.2 mM at a near-physiological pH 7.5. Chromogranin B also bound 50 mol of Ca2+/mol (670 nmol Ca2+/mg) with a Kd of 3.1 mM at pH 7.5. Given the high-capacity, low-affinity Ca2+-binding property of SgII and its presence in the IP3-sensitive nucleoplasmic Ca2+ store vesicles, these results suggest that SgII may function in the storage and control of Ca2+ in the nucleus through its interaction with CGB in the nucleoplasmic vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.