Abstract

In-depth understanding and accurately predicting the occurrence and fate of polycyclic aromatic hydrocarbons (PAHs) in constructed wetlands (CWs) is extremely crucial for optimizing the CWs construction and strengthening the risk control. However, few studies have focused on the PAHs among sediment-water-plant and model simulation in CWs. In this study, sediment, surface water and reed samples were gathered and analyzed from a typical CW. The concentrations of 16 PAHs (Σ16PAHs) in sediments, surface water and reeds ranged from 620 to 4277 μg/kg, 114 to 443 ng/L and 74.5 to 362 μg/kg, respectively. The coefficients of variation (CV) were calculated as 0.796, 0.431 and 0.473 for the above three media respectively, indicating that the spatial distribution variation was medium intensity. The fugacity fraction (ff) suggested that sediments might act as the secondary release source of most PAHs. According to the diagnostic ratios and principal component analysis-multiple linear regression (PCA-MLR), PAHs in this CW mainly come from fossil fuels combustion and petroleum leakage. PAHs in sediments showed high ecological risk at water inlet and moderate risk at the other functional zones, while low risks for surface water at all functional zones. Although the human health risk assessment indicated relatively low cancer risk, the health risk still cannot be ignored with the continuous input and accumulation of exogenous PAHs. A mathematical model covering the hydraulics parameters and composition characteristics of the wetland was established, and its reliability was verified. The simulated results obtained by the established model were basically consistent with the measured values. In addition, the total remove efficiency of PAHs in surface water was 40.2%, which calculated by the simulated model. This work provides helpful insight into the comprehension of occurrence and fate of PAHs among multi-media in CWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call