Abstract

Powders of R-(Al1-xFex)2O3 solid solutions prepared by the calcination in air of the corresponding γ-(Al1- xFex)2O3 powders were studied by several techniques including X-ray diffraction, field-emission-gun scanning electron microscopy, transmission Mossbauer spectroscopy, integral low-energy electron Mossbauer spectroscopy (ILEEMS), and Fe K-edge X-ray absorption near-edge structure (XANES) measurements. The asymmetry of the characteristic Mo¨ssbauer doublet representing Fe3+ ions substituting for Al3+ ions in the corundum lattice of R-(Al1-xFex)2O3 solid solutions was resolved and explained for the first time by using two additional subspectra, i.e., a broad second doublet characteristic of a very distorted octahedral site for Fe3+ and a singlet attributable to R-Fe, suggesting the presence of metallic iron nanoclusters consisting of only a few number of atoms within the solid solution grains. ILEEMS studies showed that the Fe nanoclusters are evenly distributed among the surface layers and the cores of the grains. Fe K-edge XANES measurements further confirmed the occurrence of metallic iron. The proportion of Fe nanoclusters increases when the total iron content is decreased, as does the proportion of distorted octahedral site, suggesting that they are located around the iron nanoclusters. The formation of the metallic Fe nanoclusters in the R-(Al1-xFex)2O3 grains is thought to be a consequence of the γ f R phase transition which implies structural rearrangement on both the cationic and anionic sublattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call