Abstract
Tryptophan-rich antigens of malarial parasites have been proposed to be the potential vaccine candidate antigens. Plasmodium vivax contains the largest number of such antigens, which need to be evaluated for their immune responses. Recombinant proteins of 15 P. vivax tryptophan-rich antigens (PvTRAgs) were expressed, purified, and used for the human humoral and cellular immune responses. Genetic polymorphism of these 15 genes was also determined among clinical P. vivax isolates. The T lymphocytes of P. vivax exposed individuals expressed higher level of CD69 against all 15 PvTRAgs. These antigens also activated the large population of CD4(+) T cells and produced higher level of intracellular IL-2, INF-γ and IL-4. Although there was a mixed Th1 and Th2 response against these antigens, this response was biased toward Th2. The majority of P. vivax patients (75.7%-100%, n = 33) produced IgG antibodies against these antigens. Most of these antigens showed conserved T- and B-cell epitopes in the parasite population. These results suggest the presence of memory T cells in humans against these antigens to generate faster and more specific immune responses to minimize the P. vivax infection. Further characterization of these PvTRAgs may lead to the identification of a potential therapeutic target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.