Abstract

Italy is one of the main producers and exporters of cheese made from unpasteurized sheep milk. Since raw milk and its derived products are known sources of human infections, cheese produced from raw sheep milk could pose a microbiological threat to public health. Hence, the objectives of the study were: to characterize the potential risk of the presence of pathogens Escherichia coli O157, Listeria monocytogenes, and Salmonella in raw ovine milk destined for cheese production obtained from all the sheep farms (n = 24) in the Marches region (Central Italy) that directly transform raw milk into cheeses and to evaluate the equivalence between the analytical methods applied. A three-step molecular method (simultaneous culture enrichment, species-specific DNA magnetic isolation, and multiplex real-time polymerase chain reaction) was used for milk (n = 143) and cheese (n = 5) analysis over a 3-year period. L. monocytogenes was not detected on any of the farms, while E. coli O157 was found on three farms, although only using the molecular method. Four farms tested positive for Salmonella spp., and Salmonella enterica subsp. diarizonae serovar 61:k:1,5,7 was isolated in one of those cases. This information highlights the need to develop preventative measures to guarantee a high level of consumer safety for this specific product line, and the molecular method could be a time-saving and sensitive tool to be used in routine diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.