Abstract

In search of early structural markers of arteriogenesis, we studied the expression of gap junction proteins as well as of contractile and cytoskeletal proteins in smooth muscle cells (SMCs) during coronary collateral vessel growth induced by chronic occlusion of the left circumflex artery (LCx) in the dog heart. We used confocal microscopy with antibodies against connexin37 (Cx37), alpha-smooth muscle actin (alpha-SM actin), calponin, desmin and vinculin. The quantitative confocal analysis of immunofluorescence intensity showed that (1) in normal vessels (NV), Cx37 was present in endothelium only, not in SMC. Calponin, alpha-SM actin, desmin and vinculin were evenly expressed in SMC. (2) In early growing V (EV) with minimal intima formation, alpha-SM actin, calponin and vinculin showed little change in SMC, but desmin was 3.3 times lower than in NV, and Cx37 was induced (NV 0 arbitrary units/microm2, EV 50.3). (3) In actively growing V (AV), alpha-SM actin, calponin and vinculin were 3-, 3.3- and 2.9-fold lower, respectively, in the neointima as compared to the media. However, Cx37 was 48.2 AU/microm2 in the media and 15.8 AU/microm2 in the neointima. Desmin was almost absent in the neointima and 5-fold reduced in the media. SMC, strongly positive for alpha-SM actin and calponin, expressed Cx37. Our findings indicate that induction of Cx37 and reduction of desmin precede the phenotypic changes of SMCs, which are characterized by down-regulation of alpha-SM actin, calponin and vinculin, and the formation of a neointima. An altered expression of Cx37 and desmin, therefore, are early markers for arteriogenesis in dog heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.